Voith Turbo

VOITH

Technical Information Highly Flexible Couplings

Well-established technology

Voith Turbo Hochelastische Kupplungen GmbH & Co. KG is continuing the use of the well-established Kuesel coupling technology. More than 35 years experience in working in perfecting drive systems that are subjected to torsional vibrations are the basis of the relationship to our customers.

High reliability

Increased reliability combined with less downtimes are the customers requirements for modern drive systems. Focusing these requirements Voith Turbo puts highest attention on the service life of all drive chain components and connected equipment.

All the world's our home

We are a reliable partner to engine and vehicle manufacturers in all international markets. A multitude of applications in the rail, construction and shipbuilding industries as well as test benches and other drive systems are equipped with Voith highly flexible couplings. Torsional vibration analysis and measurement services are completing the extensive product portfolio.

Contents

1	Technical information	3
1.1	Drive chain	3
1.1.1	Vibrating drive chain	3
1.1.2	Diesel engines as source of torsional vibration	4
1.1.3	Torsional vibration damper	5
	"Voith Highly Flexible Couplings"	
1.2	Elastomer element	6
1.2.1	Characteristic features	6
1.3	Causes of failure	8
1.3.1	Fatigue	8
1.3.2	Thermally induced failure	8
1.3.3	Forced rupture (overload)	8
1.3.4	Ageing	8
1.4	Friction dampers	9
2	Applications	10
2 2.1	Applications Remote mounted arrangements	10 10
2 2.1 2.1.1	Applications Remote mounted arrangements Kuesel universal joint shaft couplings	10 10 11
2 2.1 2.1.1 2.1.2	Applications Remote mounted arrangements Kuesel universal joint shaft couplings Outrigger bearing couplings	10 10 11 11
2 2.1 2.1.1 2.1.2 2.2	Applications Remote mounted arrangements Kuesel universal joint shaft couplings Outrigger bearing couplings Separate mounted arrangements	10 10 11 11 12
2 2.1 2.1.1 2.1.2 2.2 2.2.1	Applications Remote mounted arrangements Kuesel universal joint shaft couplings Outrigger bearing couplings Separate mounted arrangements Universally flexible couplings	10 10 11 11 12 12
2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.3	Applications Remote mounted arrangements Kuesel universal joint shaft couplings Outrigger bearing couplings Separate mounted arrangements Universally flexible couplings Bell-house mounted arrangements	10 10 11 11 12 12 13
2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.3 2.3.1	Applications Remote mounted arrangements Kuesel universal joint shaft couplings Outrigger bearing couplings Separate mounted arrangements Universally flexible couplings Bell-house mounted arrangements Blind assembly couplings	10 10 11 12 12 13 13
2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.3 2.3.1 3	Applications Remote mounted arrangements Kuesel universal joint shaft couplings Outrigger bearing couplings Separate mounted arrangements Universally flexible couplings Bell-house mounted arrangements Blind assembly couplings Dimensioning	10 10 11 12 12 13 13 13
2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.3 2.3.1 3 3.1	Applications Remote mounted arrangements Kuesel universal joint shaft couplings Outrigger bearing couplings Separate mounted arrangements Universally flexible couplings Bell-house mounted arrangements Blind assembly couplings Dimensioning Methodology	10 10 11 11 12 12 13 13 13 14 14
2 2.1 2.1.1 2.2 2.2 2.2.1 2.3 2.3.1 3 3.1 3.2	Applications Remote mounted arrangements Kuesel universal joint shaft couplings Outrigger bearing couplings Separate mounted arrangements Universally flexible couplings Bell-house mounted arrangements Blind assembly couplings Dimensioning Methodology Selecting the Coupling Series	10 10 11 11 12 12 13 13 13 14 14
2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.3 2.3.1 3 3.1 3.2 3.3	Applications Remote mounted arrangements Kuesel universal joint shaft couplings Outrigger bearing couplings Separate mounted arrangements Universally flexible couplings Bell-house mounted arrangements Blind assembly couplings Dimensioning Methodology Selecting the Coupling Series Selecting the Coupling Size	10 10 11 11 12 12 13 13 13 14 14 14 14
2 2.1 2.1.1 2.2 2.2 2.2.1 2.3 2.3.1 3 3.1 3.2 3.3 3.4	Applications Remote mounted arrangements Kuesel universal joint shaft couplings Outrigger bearing couplings Separate mounted arrangements Universally flexible couplings Bell-house mounted arrangements Blind assembly couplings Dimensioning Methodology Selecting the Coupling Series Selecting the Coupling Size Torsional Vibration Analysis (TVA)	10 10 11 11 12 12 13 13 13 14 14 14 14 14

4	Overview of the Coupling Series	16
4.1	Coupling Series for remote mounted	16
	arrangements BR 140 – BR 199	
4.2	Coupling Series for separate mounted	20
	arrangements BR 200 – BR 240	
4.3	Coupling Series for bell-house mounted	22
	arrangements BR 311 – BR 371	
4.4	Examples of special coupling designs K	23
5	Coupling identification	24
5.1	Couplings with standard	24
	elastomer element	
5.2	Couplings with disk	24
	elastomer element	
5.3	Outrigger bearing couplings	24
6	Measurement units and	25
6	Measurement units and conversion factors	25
6 7	Measurement units and conversion factors Coupling technical data	25 26
6 7 8	Measurement units and conversion factorsCoupling technical dataMaximum admissible speeds	25 26 37
6 7 8 9	Measurement units and conversion factorsCoupling technical dataMaximum admissible speedsAdmissible shaft misalignments	25 26 37 38
6 7 8 9 10	Measurement units and conversion factorsCoupling technical dataMaximum admissible speedsAdmissible shaft misalignmentsQuestionnaire	25 26 37 38 39
6 7 8 9 10 11	Measurement units and conversion factorsCoupling technical dataMaximum admissible speedsAdmissible shaft misalignmentsQuestionnaireTechnical services	25 26 37 38 39 42
6 7 8 9 10 11 12	Measurement units and conversion factorsCoupling technical dataMaximum admissible speedsAdmissible shaft misalignmentsQuestionnaireTechnical servicesCertification	25 26 37 38 39 42 43

1 Technical information

Fig. 1: Resonant rise function of a linear two-mass resonator according to the above equation.

1.1 Drive chain

A drive chain will normally consist of:

- a driving machine (prime mover)
- coupling elements (couplings, gears etc.)
- a driven machine (power consumer)

The drive chain transmits mechanical power that can be calculated from torque and speed. Especially in mobile applications, reciprocating diesel engines are used as prime movers. The machines to be driven are often pumps, compressors or generators.

1.1.1 Vibrating drive chain

The individual components of a drive chain are made of elastic materials (e.g. steel) and have a mass. Accordingly, they represent a system susceptible to torsional vibration. If this system is incited, it will start vibrating with a determined frequency: its natural frequency f_{nat}. In the case of linear, undamped two-mass resonators, the natural frequency can be calculated according to the following equation:

$$f_{nat} = \frac{1}{2\pi} \sqrt{C_{1/2} \left(\frac{1}{J_1} + \frac{1}{J_2} \right)}$$

where J_1 and J_2 are the involved inertias and $C_{1/2}$ is the elastic stiffness of the connection between the two masses.

If the system is incited with a frequency f which is equal to the natural frequency ($f = f_{nat}$), the vibration amplitude A will grow depending on the excition amplitude A_A. If the vibration is not damped, the amplitude will continue to grow until the system is destroyed (fatal resonant rise). If a damping D is introduced, the vibration amplitude will assume a finite value (fig. 1):

$$v = \frac{A}{A_A} = \sqrt{\frac{1 + D^2}{(1 - \Omega)^2 + D^2}}$$

where $\Omega = \frac{f}{f_e}$

Torsional vibration in a drive chain can be regarded comparable. The stiffness is in this case called torsional stiffness, C_T , and the mass oscillating around the axis of rotation is characterised as the mass moment of inertia, J.

Fig. 2: Partial march of pressure in a 1-Cylinder motor at low speed

1.1.2 Diesel engines as source of torsional vibration

A reciprocating diesel engine does not convey its capacity evenly over one rotation of the crankshaft. This is illustrated in figure 2: on principle, the torque transmitted to the crankshaft by each of the cylinders fluctuates very much. An increased number of cylinders and higher inertia weights (flywheel) will reduce the range of torque fluctuation. Nonetheless, a diesel enginestrains the drive chain considerably, especially since the new injection technologies have been introduced and there is the trend towards ever lighter inertia weights.

Four-stroke engines produce per cylinder one torque peak in every two crankshaft revolutions. In multicylinder engines with even firing intervals, the excitation incidence (order) is therefore equal to the half of z, the number of cylinders. Considering the engine speed n, it is possible to calculate the excitation frequency fexc for the drive chain and to compare it to the natural frequency fnat of the drive chain:

$$f_{A} = \frac{z}{2} \cdot \frac{n/\min^{-1}}{60 \text{ s}}$$

In overcritical operating conditions $(f > f_{nat})$, it must be ensured that the minimum excitation frequency will in all operating points will remain to a sufficient degree above the natural frequency so that the rate of rise v will remain below 1. The same applies to subcritical operating conditions $(f < f_{nat})$.

Also above the natural frequency of a drive chain, the dynamic stress resulting from the torque fluctuations of a diesel engine has detrimental effects on the lifetime of any component in it (i.e., joint shafts, gears etc.).

Even a slight reduction in the dynamic vibration amplitude can multiply the lifetime of the drive chain components by several times! These facts are very clearly illustrated by the so-called Wöhler Diagram (a stress-number diagram, see fig. 3).

1.1.3 Torsional vibration damper "Voith Highly Flexible Couplings"

A useful operational strength and plant lifetime is often achieved only after a Highly Flexible Coupling has been installed in the drive chain.

In systems where a diesel engine acts as prime mover, the Highly Flexible Coupling has mainly two functions:

- 1. Shift the first natural frequency of the vibrating drive chain into an uncritical range.
- 2. Sufficiently damp any occurring vibration amplitudes.

Voith Highly Flexible Couplings are well-suited to these tasks. Special elastomers are employed in the spring elements that feature both high elasticity and excellent damping characteristics. The damping effect can be further increased using additional friction damping. A suitable design and material selection allows us to vary the characteristic data of a coupling and to adapt them to the customer's specific requirements.

Fig. 4: Moment-Angle-Line of a Voith Elastomer element

1.2 Elastomer element

1.2.1 Characteristic features

The elastomer element is the basic functional and constructional component of Voith Highly Flexible Couplings. An essential characteristic feature of the elastomer element is its great capacity for deformation that is attained through the special molecular structure of the material and gives it an elastomeric-viscous quality.

When a elastomer element is deformed, the work of deformation (see fig. 4) is transformed to:

- Elastic energy which can be reconverted to mechanical work (spring-back to the initial position).
- Viscous energy which is dissipated in the form of heat.

The stiffness represents the proportionality factor in the transformation of elastic energy to mechanical work. The static stiffness depends on the employed elastomeric material and the component geometry. The dynamic stiffness is influenced by the vibration amplitude, the material temperature and the vibration frequency (fig. 5). It can be expressed only for a specific component geometry in specific operating conditions and is not constant. Viscous energy is the waste product of the work of deformation which is transformed into heat in an elastomer element. It is called structural or internal damping of a material. The damping effect of the elastomer element depends on the elastomer material, the vibration amplitude, the vibration frequency and the elastomer temperature (fig. 6). It is not constant and can only be stated for one determined operating condition.

Fig. 5: Influence of temperature and vibration amplitude on stiffness

Fig. 6: Dependence of the internal damping on temperature and vibration amplitude

These correction factors will normally yield sufficiently precise results. Exact correction factors for specific elastomeric materials can be obtained from of Voith Turbo.

Voith Turbo employs of natural rubber (N) and silicone (S) elastomeric materials in its Highly Flexible Couplings. The natural rubber material (N) features excellent properties such as:

- linear stiffness
- high elasticity
- high damping capacity
- high dynamic strength
- very low ageing tendency at temperatures below 100°C
- using different hardness, both torsional rigidity and torsional strength can be adjusted.

The silicone material (S) is used in conditions with high thermal stress and when a progressive characteristic is required. It is furthermore possible to use elastomeric materials that are electrically insulating (E).

Shore-Hardness (Natural rubber)	Operating temperature (natural rubber)	Stiffness	Relative damping
45 60 ShA	20 °C	1	1
45-00 SIIA	60 °C	0.8	0.8
70.014	20 °C	1	1
70 SNA	60 °C	0.6	0.6

Correction factors for an initial examination of the torsional vibration (catalogue value x correction factor)

1.3 Causes of failure

The dynamic stress during operation and the elastomeric properties, which change during operation, cause the Highly Flexible Coupling to be exposed to a complex stress pattern. However, the strain limit of the elastomeric element may not be exceeded.

The following 4 modes of failure determine the strain limits:

- 1. Fatigue (endurance limit)
- 2. Thermally induced failure (thermal degradation)
- 3. Forced rupture (overload)
- 4. Ageing

In most of the cases, the failure of a coupling can be attributed to fatigue and thermal destruction.

1.3.1 Fatigue

The material fails due to repeated stress. While the elastomeric material can endure numerous low-level stress cycles, it can withstand only a few high-level stress cycles. The frequency of stress recurrence must be so low that the material will not heat up.

1.3.2 Thermally induced failure

The material fails due to chemical decomposition (reversal) of the molecular structure caused by heat. The elastomer element can be heated up by high ambient temperatures as well as by damping work which arises due to continuous alternating effort at high frequencies. In practice, both causes of failure often occur simultaneously because they influence each other detrimentally. **1.3.3 Forced rupture** (overload)

The elastomeric material fails due to a (quasi-)statical load above the ultimate strength. Preceding fatigue may already have caused cracks in the elastomer so that the rupture load causing failure is lowered due to the reduced remaining crosssectional area of the elastomer element. The mechanical strength is reduced through the effects of heat even before the chemical reversal process starts so that again, the rupture load causing failure after starts is reduced even further.

1.3.4 Ageing

Chemical reactions of the elastomer element surface with media present in the environment result in a destruction of the molecular structure. This causes surface degradation which lower the strain limits for fatigue and forced rupture.

Fig. 7: Preloaded elastomer element and friction disk in the highly flexible coupling

1.4 Friction dampers

To maximise damping, Voith Highly Flexible Couplings can be equipped with an optional friction damper. This is a friction disk which is inserted between the primary and the secondary part of the coupling and is preloaded by the elastomer element (fig. 7). The required damping can be adjusted via the preload path of the element.

The friction disk has a further purpose: it acts as a thrust bearing for the elastomer element in the coupling. Thanks to the preload, the ela stomer element is operated in a state of stress that is advantageous to the lifetime.

Friction converts mechanical power into heat energy and the friction material is continually being worn down. Over time, the normal force exerted on the friction disk will weaken due to the decrease in the elastomer element preload and the damping effect will diminish steadily. If the load spectrum is exactly known, the friction coefficient, normal force and wear behaviour of the friction pairing in the coupling can be dimensioned so that the wear limit coincides with the lifetime of the elastomer element. This avoids costly maintenance work and reduces the life cycle costs.

2 Applications

Fig. 8: Schematic diagram of the joint shaft remote mounted arrangement.

2.1 Remote mounted arrangements

- Driver and driven machines are installed on different foundations and located relatively distant from each other.
- A joint shaft is employed as a shaft coupling.
- The Highly Flexible Coupling supports the weight of the joint shaft, guiding and stiffening it radially. The added benefit of this being that the shaft operates without any unbalance forces.
- For the remote mounted arrangements, Voith Turbo offers two different coupling designs according to size and length of the joint shaft (fig. 9 and 10):

- With the reduction of dynamic torsional vibrating loads the Highly Flexible Coupling in drive chains performs additional functions that can be distinguished by the way the drive unit and power output are installed: Practically all drive chains can be divided into one of the 3 methods of installation:
- Remote mounted arrangement (fig. 8)
- Separate mounted arrangement (fig. 11)
- Bell-house mounted arrangement (fig. 13)

Fig. 9: Kuesel universal joint shaft coupling, e.g. Series BR 152.

Fig. 10: Outrigger bearing coupling, e.g. Series BR 144.

BR 152

2.1.1 Kuesel universal joint shaft couplings

- The bearing which guides the joint shaft is integrated into the coupling design.
- The weight of the joint shaft and coupling is transmitted to the rear crankshaft bearing.
- Depending on the coupling series, friction or antifriction bearings are used.
- These bearings follow any relative twist of the coupling performing an oscillating rotary movement. This is considered both in the bearing design and in the selection of the bearing materials.

2.1.2 Outrigger bearing couplings

- The coupling comprises of a bearing system for bell-house mounting if the crankshaft bearings of the diesel engine cannot support the weight of joint shaft and coupling.
- The bearing is located inside a bell-housing which is bolted to the engine flywheel housing.
- The weight of the joint shaft is transmitted to the engine flywheel housing.
- The bearing does not carry out a vibrating rotation, it rotates with the joint shaft, and for this reason needle roller bearings are used.

Fig. 11: Schematic diagram of a separate mounted arrangement.

Fig. 12: Universally Flexible Coupling, e.g. Series BR 200

BR 230

2.2 Separate mounted arrangements

- Driver and driven machines are installed on different foundations and located relatively close to each other.
- Driver and driven machines have elastic supports and can therefore vibrate in the axial, radial and angular direction relative to one another.
- The coupling compensates for these movements by having additional flexibility in axial, radial and angular direction.
- For separate mounted arrangements, Voith Turbo offers different designs of the following couplings:

2.2.1 Universally flexible couplings

The flexibility is adjusted via the elasticity of the elastomer element (fig. 12).

Fig. 13: Schematic diagram of a bellhouse mounted arrangement

Left, Fig. 14: Blind assembly coupling with BR 315 SK element, e.g. Series BR 316.

Right, Fig. 15: Blind assembly coupling with friction damping, e.g. Series BR 362.

2.3 Bell-house mounted arrangements

- The driven machine is directly flanged onto the engine flywheel housing.
- The Highly Flexible Coupling is designed as a blind assembly unit since it needs to be mounted at the same time as the driver and driven machine are bolted together.
- For bell-house mounted arrangements, Voith Turbo offers different designs of the following couplings:

2.3.1 Blind assembly couplings

- The blind assembly capability can be implemented in different ways:
 - Toothing directly in the elastomer element (fig. 14)
 - Positive engagement between an inner and outer ring by means of pins
 - Positive engagement by means of splined hub and shaft (fig. 15)

3 Dimensioning

3.1 Methodology

Dimensioning a Highly Flexible Coupling is an iterative process due to the complexity of the material stressing:

3.2 Selecting the Coupling Series

The criteria for the selection of the suitable Series are described in section 3.

The major aspects are:

- Mounting arrangement
- Power take-off (primary) and driven unit (secondary) shaft connections
- Available installation space

- Ease of installation and dismantling
- Maximum speed
- Flexibility

3.3 Selecting the Coupling Size

- A reference value for the selection of a coupling size is the torque consumed by the driven machine at the nominal (rated) speed: T_{nom}.
- Depending on the operating conditions of the drive system, an operational factor S_L determined that takes into account the following influencing variables:
 - Number and size of load impacts (e.g. transient effects)
 - Ratio of the primary and secondary mass moments of inertia
 - Extent of the difference between operating speed and natural frequency of the drive chain
 - Temperature in the coupling environment
- The selection of the coupling size aims chiefly at dimensioning its lifetime with respect to the causes of failure "elastomer element fatigue" (see section 1.3.1) and to the wear of a friction damper which is possibly installed (see section 1.4).
- When selecting the size, not all catalogue values need necessarily to be observed (section 7).
 If the catalogue values are exceeded, it is however mandatory to consult Voith Turbo.

Furthermore, the German standard DIN 740 defines additional coupling characteristic data that can be used in dimensioning the coupling. This data is stated in the data sheets.

3.4 Torsional Vibration Analysis (TVA)

- The aim of the Torsional Vibration Analysis with regard to the elastomer coupling is to determine the permanently occurring vibrational torques in the coupling in different operating conditions.
- These alternating torques heat the elastomer element up due to the damping (power loss). The TVA is therefore essentially a check for cause of failure "Thermally induced failure" (also see section 1.3.2).
- At higher environment temperatures (e.g. installation inside a bell-housing), the Highly Flexible Coupling can dissipate less heat. This will reduce the maximum admissible dissipated power and the resulting admissible continuous alternating torque.
- If the elastomer element heats up, its stiffness will decrease. This leads to an increased angle of twist across the coupling. The lifetime of the elastomer element will therefore decrease accordingly.

3.5 Operational strength

- The lifetime of an elastomeric coupling is limited by the dynamic operating stress by fatigue. Here, the decisive factors are the number and the force of load impacts (sudden load changes, load peaks) and the consequential damage.
- The relationship between the amount of partial damage through alternating loads and the size of a load impact is known for certain materials and can be found for others with the help of multiple-stage lifetime tests. It serves as a basis for detecting the (dynamic) operational stress using the methodology and processes made available by the operational strength. These can be considered in the dimensioning or to determine the lifetime of the coupling.
- An essential condition for this is that the dynamic operational loads are known in the form of a representative load spectrum. The loads can be determined with a TVM (Torsional Vibration Measurement) and can be converted into a load spectrum by means of an appropriate classification process. Using the relationship between load spectrum and partial damage, a damage accumulation can be carried out and the serviceable life of a coupling with the desired probability of failure can be predicted.

Definition of coupling chai	ennition of coupling characteristic data according to standard Din 740						
Term	Symbol	Definition					
Rated torque	T _{KN}	Continuous transferable torque					
Maximum torque	T _{Kmax}	Maximum transferable torque, risingly to be endured at least 10^5 times and alternatingly at least $5x10^4$ times					
Vibratory torque	T _{KW}	Torque amplitude, to be continuously endured at 10 Hz and 20 °C environment temperature					
Maximum damping power	P _{KW}	Admissible damping power, to be continuously endured at 10 Hz and 20 $^{\circ}\mathrm{C}$ environment temperature					
Axial misalignment	ΔK_a	Axial misalignment tolerance of the half-coupling					
Radial misalignment	ΔK_r	Radial misalignment tolerance of the half-couplings					
Angular misalignment	ΔK_w	Angular misalignment tolerance of the half-coupling					
Rigidity of the torsion spring (stiffness)	\textbf{C}_{Tdyn}	$C_{Tdyn} = \frac{dT_{\kappa}}{d\phi}$					
Relative damping	Ψ	$ \psi = \frac{A_{D}}{A_{el}} $ $ A_{D}: \text{ damping power of one vibration cycle} $ $ A_{el}: \text{ elastic deformation energy} $					

4 Overview of the Coupling Series

4.1 Coupling Series for remote mounted arrangements BR 140 - BR 152

BR 140

BR 142

BR 144

BR 150

BR 151

Desig- nation	Type of coupling	Bearing type	Frictional damping	Connection	Notes
BR 140	Centred single element coupling as flange bearing	Antifriction bearing	no	Engine flywheel/housing – joint shaft	
BR 142	Centred single element coupling as flange bearing	Antifriction bearing	yes	Engine flywheel/housing – joint shaft	Relatively small mass on the flywheel
BR 144	Centred single element coupling as flange bearing	Antifriction bearing	yes	Engine flywheel/housing – joint shaft	Relatively big mass on the flywheel
BR 150	Centred single element coupling	Friction bearing	yes	Engine flywheel – joint shaft	Very short installed length
BR 151	Centred single element coupling	Antifriction bearing	yes	Engine flywheel – joint shaft	For higher speeds
BR 152	Centred single element coupling	Friction bearing	yes	Engine flywheel – joint shaft	

Coupling Series for remote mounted arrangements BR 153 - BR 159

BR 153

BR 154

BR 155

BR 157

BR 158

Desig- nation	Type of coupling	Bearing type	Frictional damping	Connection	Notes
BR 153	Centred single element coupling	Antifriction bearing	yes	Flange – joint shaft	For higher speeds
BR 154	Centred single element coupling	Friction bearing	yes	Flange – joint shaft	
BR 155	Centred single element coupling	Friction bearing	yes	Flange – joint shaft	
BR 157	Centred single element coupling	Friction bearing	yes	Solid shaft – joint shaft	Smallest coupling inertia at universal joint shaft side
BR 158	Centred single element coupling	Friction bearing	yes	Solid shaft – joint shaft	Biggest coupling inertia at universal joint shaft side
BR 159	Centred twin element coupling with double torsional elasticity	Friction and antifriction bearing	no	Flange – joint shaft	Particularly suitable for engine test rigs

Coupling Series for remote mounted arrangements BR 160 - BR 173

BR 161

BR 171

BR 172

Desig- nation	Type of coupling	Bearing type	Frictional damping	Connection	Notes
BR 160	Centred twin element coupling	Antifriction bearing	no	Engine flywheel – joint shaft	For higher speeds
BR 161	Centred twin element coupling	Antifriction bearing	no	Flange – joint shaft	For higher speeds
BR 170	Centred twin element coupling	Antifriction bearing	yes	Engine flywheel – joint shaft	For higher speeds
BR 171	Centred twin element coupling	Antifriction bearing	yes	Flange – joint shaft	For higher speeds
BR 172	Centred twin element coupling	Friction bearing	yes	Engine flywheel – joint shaft	
BR 173	Centred twin element coupling	Friction bearing	yes	Flange – joint shaft	

Coupling Series for remote mounted arrangements BR 190 - BR 199

BR 190

BR 198

Desig- nation	Type of coupling	Bearing type	Frictional damping	Connection	Notes
BR 190	Coupling design with longitudinal expansion compensation shaft	Friction bearing	no	Engine flywheel – flange	Particularly suitable for engine test rigs
BR 198	Coupling design consisting of: – highly flexible coupling – synchronising shaft	Friction and antifriction bearing	yes	Engine flywheel – joint shaft	Specifically designed for small marine main propulsion drives (Aquadrive CVT®)
BR 199	Coupling design consisting of: - highly flexible coupling - joint shaft - connecting elements, if required				

4.2 Coupling Series for separate mounted arrangements BR 200 - BR 240

BR 200

BR 210

BR 220

BR 230

Desig- nation	Type of coupling	Bearing type	Frictional damping	Connection	Notes
BR 200	Universally flexible twin element coupling	-	no	Engine flywheel – solid shaft	
BR 210	Universally flexible twin element coupling	-	no	Engine flywheel – solid shaft	Elements can be dismantled radially via a split ring
BR 215	Universally flexible twin element coupling	-	no	Engine flywheel – solid shaft	Radially removable elements
BR 220	Universally flexible twin element coupling	-	no	Flange – solid shaft	
BR 230	Universally flexible twin element coupling	-	no	Solid shaft – solid shaft	
BR 240	Universally flexible twin element coupling	-	no	Solid shaft – solid shaft	Radially removable elements

4.3 Coupling Series for bell-house mounted arrangements BR 311 - BR 321

BR 311

BR 315

BR 317

BR 318

Desig- nation	Type of coupling	Bearing type	Frictional damping	Connection	Notes
BR 311	Blind assembly coupling with disk element(s)	-	no	Engine flywhee – solid shaft	For generators according to DIN 6281
BR 315	Blind assembly coupling with disk element(s)	-	no	Engine flywhee – solid shaft	Standard design, short
BR 316	Blind assembly coupling with disk element(s)	-	no	Engine flywhee – solid shaft	Standard design, long
BR 317	Blind assembly coupling with disk element(s)	-	no	Engine flywhee – solid shaft	Radially removable elements
BR 318	Blind assembly coupling with disk element(s)	-	no	Engine flywhee – solid shaft	Elements can be housing dismantled radially if the fly- wheel protrudes sufficiently
BR 321	Blind assembly coupling with disk element(s)	-	no	Solid shaft – solid shaft	

4.3 Coupling Series for bell-house mounted arrangements BR 322 - BR 371

BR 340

BR 362

BR 364

BR 366

Desig- nation	Type of coupling	Bearing type	Frictional damping	Connection	Notes
BR 322	Blind assembly coupling with disk element(s)	-	no	Solid shaft – solid shaft	Radially removable elements
BR 340	Single element blind assembly coupling without preload	-	no	Engine flywheel – splined shaft	For light-duty applications
BR 362	Single element blind assembly coupling	-	yes	Engine flywheel – splined shaft	
BR 364	Single element blind assembly coupling	-	yes	Engine flywheel – solid shaft	
BR 366	Twin element blind assembly coupling	-	no	Engine flywheel – solid shaft	
BR 371	Twin element blind assembly coupling	-	no	Engine flywheel – generator solid shaft	For single-bearing generators

4.4 Examples of special coupling designs K...

K 050 364 1105

K 056 900 1025

K 010 900 1265

K 015 900 1043

K 045 900 1050

K 080 900 1013

Designation	Type of coupling	Bearing type	Frictional damping	Connection	Notes
K 050 364 1105	Blind assembly coupling with failsafe protection	-	yes	Engine flywhee – solid shaft	Between a Diesel engine and a pump power take-off unit
K 056 900 1025	Kuesel universal joint shaft coupling with short installed length	Friction bearing	yes	Engine flywhee – joint shaft	For marine propulsions, engine flywheel is integrated into coupling
K 010 900 1265	Coupling shaft with quadruplicate and torsional flexibility	Friction and antifriction bearing	no	Flange – flange	Two Kuesel universal joint shaft couplings BR 159 connected by a profile shaft
K 015 900 1043	Centred twin element coupling combined with synchronising joint	Antifriction bearing	по	Flange – flange	
K 045 900 1050	Centred twin element coupling, electrically insulated	Friction bearing	no	Solid shaft – joint shaft	Following prEN 50124, up to 1000 V
K 080 900 1013	Centred triple element coupling	Friction bearing	no	Flange – joint shaft	

5 Coupling identification

5.1 Couplings with standard elastomer element

K	010	152	1	111	N	50	
							Shore-Hardness
							Elastomeric material: N: Natural rubber S: Silicone elastomer E: Electrically insulating material
							Consecutive number: 000999
							0: Standardised Coupling Series 1: Variant
							Coupling Series: 100399
							Size
							Identification

5.2 Couplings with disk elastomer element

SK	1000	315	03	1	111	N	50	
								Shore-Hardness
								Elastomeric material: N: Natural rubber S: Silicone elastomer
								Consecutive number: 000999
								0: Standardised Coupling Series 1: Variant
								SAE flywheel connection: 0109
								Coupling Series: 300399
								Size
								Identification

5.3 Outrigger bearing couplings

6 Measurement units and conversion factors

Unit		Conversion	
Length: I			
		[m]	[mm]
Inch	1 in	0.0254	25.4
Foot	1 ft	0.3048	304.8
Yard	1 yd	0.9144	914.4
Mile	1 mile	1609	
Nautic Mile	1 mile	1853	
Mass: m			
		[kg]	[g]
Pound	1 lb	0.4536	453.6
Ounce	1 oz	0.02835	28.35
Force: F			
		$[N] = [kg m s^{-2}]$	
Pound force	1 lbf	4.448	
Kilopond	1 kp	9.807	
Mass moment of inertia: J			
		[kg m²]	
Pound foot squared	1 lb ft ²	0.04214	
Pound inch squared	1 lb in ²	0.0002926	
Flywheel effect			
		$[kp \ m^2] (= g \cdot J)$	
	1 GD ²	4	
	1 WR ²	1	
Work: W			
		[J] = [N m]	[kJ]
Foot pound force	1 ft lbf	1.3564	
British thermal unit	1 BTU	1055	1.055
Great calorie	1 kcal	4.1868	
Power: P			
		[W]	[kW]
Horsepower, metric	1 PS	735.5	0.7355
Horsepower, imperial	1 HP	745.7	0.7457
Angle: φ			
		[rad]	
Degree	1°	0.01745	
Temperature:			
		[K]	
Degree Celsius			
Temperature difference	1 °C	1	
Ice point	0°C	273.15	
Degree Fahrenheit			
Temperature difference	1 °F	1.8	$t_{^{\circ}F} = [(9/5) \cdot t_{^{\circ}C}] + 32$
Ice point	32 °F	273.15	

7 Coupling technical data

Single standard elastomer element, preloaded, with frictional damping Coupling Series: BR 142, 144, 150, 151, 152, 153, 154, 155, 157, 158, 362, 364

Size	Shore hardness	Nominal torque	Max. torque	Adm. cont. altern. torque	Dyn. torsional rigidity	Adm. power loss	Relative damping
	A	T _{KN} [Nm]	T _{Kmax} [Nm]	T _{KW} [Nm]	C _{Tdyn} [Nm/rad]	Ρ _{κν} [W]	ψ
K 005	N 45 N 50 N 60 N 70	180 200 220 240	540 600 660 720	65 70 75 85	950 1400 2100 4100	90	1.6
K 010	N 45 N 50 N 60 N 70	260 300 330 360	780 900 990 1080	90 105 115 125	1300 2000 3000 6200	110	1.6
K 015	N 45 N 50 N 60 N 70	350 390 430 480	1050 1170 1290 1440	120 135 150 170	1700 2600 4000 8100	130	1.6
K 020	N 45 N 50 N 60 N 70	450 510 570 620	1350 1530 1710 1860	160 180 200 215	2100 3600 5000 10600	150	1.6
K 025	N 45 N 50 N 60 N 70	590 660 730 810	1770 1980 2190 2430	180 200 220 245	2800 4600 6800 13600	170	1.6
K 030	N 45 N 50 N 60 N 70	750 840 930 1030	2250 2520 2790 3090	225 250 280 310	3600 6000 8800 17950	200	1.6
K 035	N 45 N 50 N 60 N 70	960 1090 1210 1330	2880 3270 3630 3990	290 325 365 400	4600 7600 11700 22600	230	1.6
K 040	N 45 N 50 N 60 N 70	1240 1400 1550 1710	3720 4200 4650 5130	370 420 465 515	6000 9800 15000 29100	260	1.6
K 045	N 45 N 50 N 60 N 70	1680 1890 2100 2310	5040 5670 6300 6930	420 470 525 580	8500 13300 20400 39500	310	1.6

Dynamic torsional rigidity at 20 °C

Adm. temperature at the natural rubber surface between -40 to +90 $^{\circ}\text{C}$

Size	Shore hardness	Nominal torque	Max. torque	Adm. cont. altern. torque	Dyn. torsional rigidity	Adm. power loss	Relative damping
	A	T _{KN} [Nm]	T _{Kmax} [Nm]	T _{KW} [Nm]	C _{Tdyn} [Nm/rad]	Ρ _{κν} [W]	Ψ
K 050	N 45 N 50 N 60 N 70	2170 2440 2710 2990	6510 7320 8130 8970	540 610 680 750	10500 17100 26000 50000	350	1.6
K 055	N 45 N 50 N 60 N 70	2990 3360 3730 4110	8970 10080 11190 12330	750 840 935 1030	14600 23600 36400 70500	420	1.6
K 060	N 45 N 50 N 60 N 70	4400 4950 5500 6050	13200 14850 16500 18150	1100 1240 1375 1515	21400 34700 53000 103400	510	1.6
K 065	N 45 N 50 N 60 N 70	6300 7100 7900 8700	18900 21300 23700 26100	1260 1420 1580 1740	31000 50000 77000 149500	630	1.6
K 070	N 45 N 50 N 60 N 70	9100 10200 11400 12500	27300 30600 34200 37500	1820 2040 2280 2500	44300 71500 110000 213400	760	1.6
K 075	N 45 N 50 N 60 N 70	12400 14000 15500 17100	37200 42000 46500 51300	2480 2800 3100 3420	61000 98000 151000 290000	900	1.6
K 080	N 45 N 50 N 60 N 70	16900 19000 21100 23200	50700 57000 63300 69600	3380 3800 4220 4640	82300 133000 205000 397000	1060	1.6
K 085	N 45 N 50 N 60 N 70	23900 26900 29900 32900	71700 80700 89700 98700	4780 5380 5980 6580	117000 188000 290000 562000	1280	1.6
K 090	N 45 N 50 N 60 N 70	35700 41200 45400 49000	98200 113300 124800 134700	6660 7500 8320 9160	178000 288000 440000 860000	1530	1.6

Dynamic torsional rigidity at 20 °C

Twin standard elastomer elements in parallel, preloaded, with friction damping Coupling Series: BR 170, 171, 172, 173

Size	Shore hardness	Nominal torque	Max. torque	Adm. cont. altern. torque	Dyn. torsional rigidity	Adm. power loss	Relative damping
	A	T _{KN} [Nm]	T _{Kmax} [Nm]	T _{KW} [Nm]	C _{Tdyn} [Nm/rad]	P _{KV} [W]	Ψ
K 005	N 45 N 50 N 60 N 70	360 400 440 480	1080 1200 1320 1440	130 140 150 170	1900 2800 4200 8200	140	1.6
K 010	N 45 N 50 N 60 N 70	520 600 660 720	1560 1800 1980 2160	180 210 230 250	2600 4000 6000 12400	175	1.6
K 015	N 45 N 50 N 60 N 70	700 780 860 960	2100 2340 2580 2880	240 270 300 340	3400 5200 8000 16200	205	1.6
K 020	N 45 N 50 N 60 N 70	900 1020 1140 1240	2700 3060 3420 3720	320 360 400 430	4200 7200 10000 21200	235	1.6
K 025	N 45 N 50 N 60 N 70	1180 1320 1460 1620	3540 3960 4380 4860	360 400 440 490	5600 9200 13600 27200	270	1.6
K 030	N 45 N 50 N 60 N 70	1500 1680 1860 2060	4500 5040 5580 6180	450 500 560 620	7200 12000 17600 35900	310	1.6
K 035	N 45 N 50 N 60 N 70	1920 2180 2420 2660	5760 6540 7260 7980	580 650 730 800	9200 15200 23400 45200	355	1.6
K 040	N 45 N 50 N 60 N 70	2480 2800 3100 3420	7440 8400 9300 10260	740 840 930 1030	12000 19600 30000 58200	405	1.6
K 045	N 45 N 50 N 60 N 70	3360 3780 4200 4620	10080 11340 12600 13860	840 940 1050 1160	17000 26600 40800 79000	480	1.6

Dynamic torsional rigidity at 20 °C

Adm. temperature at the natural rubber surface between -40 to +90 $^{\circ}\mathrm{C}$

Size	Shore hardness	Nominal torque	Max. torque	Adm. cont. altern. torque	Dyn. torsional rigidity	Adm. power loss	Relative damping
	A	T _{KN} [Nm]	T _{Kmax} [Nm]	T _{KW} [Nm]	C _{Tdyn} [Nm/rad]	Ρ _{κν} [W]	Ψ
K 050	N 45 N 50 N 60 N 70	4340 4880 5420 5980	13020 14640 16260 17940	1080 1220 1360 1500	21000 34200 52000 100000	545	1.6
K 055	N 45 N 50 N 60 N 70	5980 6720 7460 8220	17940 20160 22380 24660	1500 1680 1870 2060	29200 47200 72800 141000	650	1.6
K 060	N 45 N 50 N 60 N 70	8800 9900 11000 12100	26400 29700 33000 36300	2200 2480 2750 3030	42800 69400 106000 206800	795	1.6
K 065	N 45 N 50 N 60 N 70	12600 14200 15800 17400	37800 42600 47400 52200	2520 2840 3160 3480	62000 100000 154000 299000	975	1.6
K 070	N 45 N 50 N 60 N 70	18200 20400 22800 25000	54600 61200 68400 75000	3640 4080 4560 5000	88600 143000 220000 426800	1180	1.6
K 075	N 45 N 50 N 60 N 70	24800 28000 31000 34200	74400 84000 93000 102600	4960 5600 6200 6840	122000 196000 302000 580000	1390	1.6
K 080	N 45 N 50 N 60 N 70	33800 38000 42200 46400	101400 114000 126600 139200	6760 7600 8440 9280	164600 266000 410000 794000	1640	1.6
K 085	N 45 N 50 N 60 N 70	47800 53800 59800 65800	143400 161400 179400 197400	9560 10760 11960 13160	234000 376000 580000 1124000	1975	1.6
K 090	N 45 N 50 N 60 N 70	71400 82400 90800 98000	196400 226600 249600 269400	13320 15000 16640 18320	356000 576000 880000 1720000	2360	1.6

Dynamic torsional rigidity at 20 °C

Size	Shore hardness	Nominal torque	Max. torque	Adm. cont. altern. torque	Dyn. torsional rigidity	Axial spring rigidity	Radial spring rigidity	Adm. power loss	Relative damping
	A	T _{KN} [Nm]	T _{Kmax} [Nm]	T _{KW} [Nm]	C _{Tdyn} [Nm/rad]	C _{ax} [N/mm]	C _{rad} [N/mm]	Ρ _{κν} [W]	ψ
K 005	N 45 N 50 N 60 N 70	360 400 440 480	1080 1200 1320 1440	130 140 150 170	1900 2800 4200 8200	2200 3000 3600 6000	700 900 1300 2500	100	0.75 0.75 0.95 1.15
K 010	N 45 N 50 N 60 N 70	520 600 660 720	1560 1800 1980 2160	180 210 230 250	2600 4000 6000 12400	2600 3400 4000 6800	800 1000 1400 2800	130	0.75 0.75 0.95 1.15
K 015	N 45 N 50 N 60 N 70	700 780 860 960	2100 2340 2580 2880	240 270 300 340	3400 5200 8000 16200	3000 3800 4400 7800	900 1100 1600 3100	150	0.75 0.75 0.95 1.15
K 020	N 45 N 50 N 60 N 70	900 1020 1140 1240	2700 3060 3420 3720	320 360 400 430	4200 7200 10000 21200	3400 4400 5000 8800	1000 1200 1700 3400	170	0.75 0.75 0.95 1.15
K 025	N 45 N 50 N 60 N 70	1180 1320 1460 1620	3540 3960 4380 4860	360 400 440 490	5600 9200 13600 27200	3800 5000 5800 10000	1100 1300 1900 3600	200	0.75 0.75 0.95 1.15
K 030	N 45 N 50 N 60 N 70	1500 1680 1860 2060	4500 5040 5580 6180	450 500 560 620	7200 12000 17600 35900	4200 5800 6600 11200	1300 1500 2100 4200	220	0.75 0.75 0.95 1.15
K 035	N 45 N 50 N 60 N 70	1920 2180 2420 2660	5760 6540 7260 7980	580 650 730 800	9200 15200 23400 45200	4800 6600 7600 12600	1500 1700 2500 4800	250	0.75 0.75 0.95 1.15
K 040	N 45 N 50 N 60 N 70	2480 2800 3100 3420	7440 8400 9300 10260	740 840 930 1030	12000 19600 30000 58200	5400 7000 8800 14000	1600 1900 2800 5300	290	0.75 0.75 0.95 1.15
K 045	N 45 N 50 N 60 N 70	3360 3780 4200 4620	10080 11340 12600 13860	840 940 1050 1160	17000 26600 40800 79000	6000 8000 10000 16000	1800 2100 3000 5900	340	0.75 0.75 0.95 1.15

Twin standard elastomer elements in parallel, preloaded, without friction damping Coupling Series: BR 160, 161, 200, 210, 215, 220, 230, 240, 366, 371

Dynamic torsional rigidity at 20 °C

Size	Shore hardness	Nominal torque	Max. torque	Adm. cont. altern. torque	Dyn. torsional rigidity	Axial spring rigidity	Radial spring rigidity	Adm. power loss	Relative damping
	A	T _{KN} [Nm]	T _{Kmax} [Nm]	T _{KW} [Nm]	C _{Tdyn} [Nm/rad]	C _{ax} [N/mm]	C _{rad} [N/mm]	Ρ _{κν} [W]	Ψ
K 050	N 45 N 50 N 60 N 70	4340 4880 5420 5980	13020 14640 16260 17940	1080 1220 1360 1500	21000 34200 52000 100000	6600 9000 11200 18000	2000 2300 3300 6400	390	0.75 0.75 0.95 1.15
K 055	N 45 N 50 N 60 N 70	5980 6720 7460 8220	17940 20160 22380 24660	1500 1680 1870 2060	29200 47200 72800 141000	7400 10000 12500 20000	2200 2600 3800 7300	460	0.75 0.75 0.95 1.15
K 060	N 45 N 50 N 60 N 70	8800 9900 11000 12100	26400 29700 33000 36300	2200 2480 2750 3030	42800 69400 106000 206800	8200 11000 13800 22000	2600 3000 4400 8400	570	0.75 0.75 0.95 1.15
K 065	N 45 N 50 N 60 N 70	12600 14200 15800 17400	37800 42600 47400 52200	2520 2840 3160 3480	62000 100000 154000 299000	9600 13000 16000 26000	2900 3400 4900 9500	690	0.75 0.75 0.95 1.15
K 070	N 45 N 50 N 60 N 70	18200 20400 22800 25000	54600 61200 68400 75000	3640 4080 4560 5000	88600 143000 220000 426800	11000 15000 18800 30000	3300 3900 5700 10900	840	0.75 0.75 0.95 1.15
K 075	N 45 N 50 N 60 N 70	24800 28000 31000 34200	74400 84000 93000 102600	4960 5600 6200 6840	122000 196000 302000 580000	12500 17000 21600 34000	3800 4400 6400 12300	980	0.75 0.75 0.95 1.15
K 080	N 45 N 50 N 60 N 70	33800 38000 42200 46400	101400 114000 126600 139200	6760 7600 8440 9280	164600 266000 410000 794000	14000 19000 24500 38000	4300 5000 7300 14000	1160	0.75 0.75 0.95 1.15
K 085	N 45 N 50 N 60 N 70	47800 53800 59800 65800	143400 161400 179400 197400	9560 10760 11960 13160	234000 376000 580000 1124000	16000 21000 27000 42000	5000 5800 8400 16400	1390	0.75 0.75 0.95 1.15
K 090	N 45 N 50 N 60 N 70	71400 82400 90800 98000	196400 226600 249600 269400	13320 15000 16640 18320	356000 576000 880000 1720000	19800 26400 32450 50600	6380 7480 9790 20900	1660	0.75 0.75 0.95 1.15

Dynamic torsional rigidity at 20 °C

Twin standard elastomer elements in series, preloaded, without friction damping Coupling Series: BR 159

Size	Shore hardness	Nominal torque	Max. torque	Adm. cont. altern. torque	Dyn. torsional rigidity	Adm. power loss	Relative damping
	A	T _{KN} [Nm]	T _{Kmax} [Nm]	T _{KW} [Nm]	C _{Tdyn} [Nm/rad]	Ρ _{κν} [W]	Ψ
K 005	N 45 N 50 N 60 N 70	180 200 220 240	540 600 660 720	65 70 75 85	475 700 1050 2050	100	0.75 0.75 0.95 1.15
K 010	N 45 N 50 N 60 N 70	260 300 330 360	780 900 990 1080	90 105 115 125	650 1000 1500 3100	130	0.75 0.75 0.95 1.15
K 015	N 45 N 50 N 60 N 70	350 390 430 480	1050 1170 1290 1440	120 135 150 170	850 1300 2000 4050	150	0.75 0.75 0.95 1.15
K 020	N 45 N 50 N 60 N 70	450 510 570 620	1350 1530 1710 1860	160 180 200 215	1050 1800 2500 5300	170	0.75 0.75 0.95 1.15
K 025	N 45 N 50 N 60 N 70	590 660 730 810	1770 1980 2190 2430	180 200 220 245	1400 2300 3400 6800	200	0.75 0.75 0.95 1.15
K 030	N 45 N 50 N 60 N 70	750 840 930 1030	2250 2520 2790 3090	225 250 280 310	1800 3000 4400 9000	220	0.75 0.75 0.95 1.15
K 035	N 45 N 50 N 60 N 70	960 1090 1210 1330	2880 3270 3630 3990	290 325 365 400	2300 3800 5850 11300	250	0.75 0.75 0.95 1.15
K 040	N 45 N 50 N 60 N 70	1240 1400 1550 1710	3720 4200 4650 5130	370 420 465 515	3000 4900 7500 14550	290	0.75 0.75 0.95 1.15
K 045	N 45 N 50 N 60 N 70	1680 1890 2100 2310	5040 5670 6300 6930	420 470 525 580	4250 6650 10200 19750	340	0.75 0.75 0.95 1.15

Dynamic torsional rigidity at 20 °C

Adm. temperature at the natural rubber surface between -40 to $+90\,^\circ\text{C}$

Size	Shore hardness	Nominal torque	Max. torque	Adm. cont. altern. torque	Dyn. torsional rigidity	Adm. power loss	Relative damping
	A	T _{KN} [Nm]	T _{Kmax} [Nm]	T _{KW} [Nm]	C _{Tdyn} [Nm/rad]	P _{KV} [W]	Ψ
K 050	N 45 N 50 N 60 N 70	2170 2440 2710 2990	6510 7320 8130 8970	540 610 680 750	5250 8550 13000 25000	390	0.75 0.75 0.95 1.15
K 055	N 45 N 50 N 60 N 70	2990 3360 3730 4110	8970 10080 11190 12330	750 840 935 1030	7300 11800 18200 35250	460	0.75 0.75 0.95 1.15
K 060	N 45 N 50 N 60 N 70	4400 4950 5500 6050	13200 14850 16500 18150	1100 1240 1375 1515	10700 17350 26500 51700	570	0.75 0.75 0.95 1.15
K 065	N 45 N 50 N 60 N 70	6300 7100 7900 8700	18900 21300 23700 26100	1260 1420 1580 1740	15500 25000 38500 74750	690	0.75 0.75 0.95 1.15
K 070	N 45 N 50 N 60 N 70	9100 10200 11400 12500	27300 30600 34200 37500	1820 2040 2280 2500	22150 35750 55000 106700	840	0.75 0.75 0.95 1.15
K 075	N 45 N 50 N 60 N 70	12400 14000 15500 17100	37200 42000 46500 51300	2480 2800 3100 3420	30500 49000 75500 145000	980	0.75 0.75 0.95 1.15
K 080	N 45 N 50 N 60 N 70	16900 19000 21100 23200	50700 57000 63300 69600	3380 3800 4220 4640	41150 66500 102500 198500	1160	0.75 0.75 0.95 1.15
K 085	N 45 N 50 N 60 N 70	23900 26900 29900 32900	71700 80700 89700 98700	4780 5380 5980 6580	58500 94000 145000 281000	1390	0.75 0.75 0.95 1.15
K 090	N 45 N 50 N 60 N 70	35700 41200 45400 49000	98200 113300 124800 134700	6660 7500 8320 9160	89000 144000 220000 430000	1660	0.75 0.75 0.95 1.15

Dynamic torsional rigidity at 20 °C

Adm. temperature at the natural rubber surface between -40 to +90 $^\circ\mathrm{C}$

Two couplings in series with two parallel standard elastomer elements each,

preloaded without friction damping

Coupling Series: BR 190

Size	Shore hardness	Nominal torque	Max. torque	Adm. cont. altern. torque	Dyn. torsional rigidity	Adm. power loss	Relative damping
	A	T _{KN} [Nm]	T _{Kmax} [Nm]	T _{KW} [Nm]	C _{Tdyn} [Nm/rad]	Ρ _{κν} [W]	Ψ
K 005	N 45 N 50 N 60 N 70	360 400 440 480	1080 1200 1320 1440	130 140 150 170	950 1400 2100 4100	200	0.75 0.75 0.95 1.15
K 010	N 45 N 50 N 60 N 70	520 600 660 720	1560 1800 1980 2160	180 210 230 250	1300 2000 3000 6200	260	0.75 0.75 0.95 1.15
K 015	N 45 N 50 N 60 N 70	700 780 860 960	2100 2340 2580 2880	240 270 300 340	1700 2600 4000 8100	300	0.75 0.75 0.95 1.15
K 020	N 45 N 50 N 60 N 70	900 1020 1140 1240	2700 3060 3420 3720	320 360 400 430	2100 3600 5000 10600	340	0.75 0.75 0.95 1.15
K 025	N 45 N 50 N 60 N 70	1180 1320 1460 1620	3540 3960 4380 4860	360 400 440 490	2800 4600 6800 13600	400	0.75 0.75 0.95 1.15
K 030	N 45 N 50 N 60 N 70	1500 1680 1860 2060	4500 5040 5580 6180	450 500 560 620	3600 6000 8800 17950	440	0.75 0.75 0.95 1.15
K 035	N 45 N 50 N 60 N 70	1920 2180 2420 2660	5760 6540 7260 7980	580 650 730 800	4600 7600 11700 22600	500	0.75 0.75 0.95 1.15
K 040	N 45 N 50 N 60 N 70	2480 2800 3100 3420	7440 8400 9300 10260	740 840 930 1030	6000 9800 15000 29100	580	0.75 0.75 0.95 1.15
K 045	N 45 N 50 N 60 N 70	3360 3780 4200 4620	10080 11340 12600 13860	840 940 1050 1160	8500 13300 20400 39500	680	0.75 0.75 0.95 1.15

Dynamic torsional rigidity at 20 °C

Adm. temperature at the natural rubber surface between -40 to $+90\,^\circ\text{C}$

Size	Shore hardness	Nominal torque	Max. torque	Adm. cont. altern. torque	Dyn. torsional rigidity	Adm. power loss	Relative damping
	A	T _{KN} [Nm]	T _{Kmax} [Nm]	T _{KW} [Nm]	C _{Tdyn} [Nm/rad]	P _{KV} [W]	Ψ
K 050	N 45 N 50 N 60 N 70	4340 4880 5420 5980	13020 14640 16260 17940	1080 1220 1360 1500	10500 17100 26000 50000	780	0.75 0.75 0.95 1.15
K 055	N 45 N 50 N 60 N 70	5980 6720 7460 8220	17940 20160 22380 24660	1500 1680 1870 2060	14600 23600 36400 70500	920	0.75 0.75 0.95 1.15
K 060	N 45 N 50 N 60 N 70	8800 9900 11000 12100	26400 29700 33000 36300	2200 2480 2750 3030	21400 34700 53000 103400	1140	0.75 0.75 0.95 1.15
K 065	N 45 N 50 N 60 N 70	12600 14200 15800 17400	37800 42600 47400 52200	2520 2840 3160 3480	31000 50000 77000 149500	1380	0.75 0.75 0.95 1.15
K 070	N 45 N 50 N 60 N 70	18200 20400 22800 25000	54600 61200 68400 75000	3640 4080 4560 5000	44300 71500 110000 213400	1680	0.75 0.75 0.95 1.15
K 075	N 45 N 50 N 60 N 70	24800 28000 31000 34200	74400 84000 93000 102600	4960 5600 6200 6840	61000 98000 151000 290000	1960	0.75 0.75 0.95 1.15
K 080	N 45 N 50 N 60 N 70	33800 38000 42200 46400	101400 114000 126600 139200	6760 7600 8440 9280	82300 133000 205000 397000	2320	0.75 0.75 0.95 1.15
K 085	N 45 N 50 N 60 N 70	47800 53800 59800 65800	143400 161400 179400 197400	9560 10760 11960 13160	117000 188000 290000 562000	2780	0.75 0.75 0.95 1.15
K 090	N 45 N 50 N 60 N 70	71400 82400 90800 98000	196400 226600 249600 269400	13320 15000 16640 18320	178000 288000 440000 860000	3320	0.75 0.75 0.95 1.15

Dynamic torsional rigidity at 20 °C

Adm. temperature at the natural rubber surface between -40 to +90 $^{\circ}\mathrm{C}$

Disk couplings, no preload Coupling Series: BR 140, 311, 315, 316, 317, 318, 321, 322

Size	Shore hardness	Nominal torque	Max. torque	Adm. cont. altern. torque	Dyn. torsional rigidity	Adm. power loss	Relative damping	Adm. speed
	A	T _{KN} [Nm]	T _{Kmax} [Nm]	T _{KW} [Nm]	C _{Tdyn} [Nm/rad]	Ρ _{κν} [W]	Ψ	n [min ^{.1}]
			1	Disk coupling ele	ment			
SK 400	N 50 N 60	400 500	1200 1200	140 170	1600 2400	65	0.75 0.9	4200
	N 70	500	1200	170	4500		1.15	
SK 630	N 60 N 70	800 800	1900 1900	280 280 280	4000 6800	90	0.9 1.15	3800
SK 1000	N 50 N 60 N 70	1000 1250 1250	3000 3000 3000	350 440 440	4600 6000 11000	120	0.75 0.9 1.15	3500
SK 1600	N 50 N 60 N 70	1600 2000 2000	4800 4800 4800	560 700 700	8000 9800 22500	160	0.75 0.9 1.15	2900
SK 2500	N 50 N 60 N 70	2500 3150 3150	7500 7500 7500	870 1100 1100	14600 18800 44200	210	0.75 0.9 1.15	2700
SK 4000	N 50 N 60 N 70	4000 5000 5000	12000 12000 12000	1400 1700 1700	23500 32000 86000	280	0.75 0.9 1.15	2500
SK 6300	N 50 N 60 N 70	6300 8000 8000	19000 19000 19000	2200 2800 2800	37000 50000 155000	360	0.75 0.9 1.15	2300
			2 Disk (coupling elements	in parallel			
SK 4002	N 50 N 60 N 70	8000 10000 10000	24000 24000 24000	2800 3400 3400	47000 64000 172000	560	0.75 0.9 1.15	2500
SK 6302	N 50 N 60 N 70	12600 16000 16000	38000 38000 38000	4400 5600 5600	74000 100000 310000	720	0.75 0.9 1.15	2300

Dynamic torsional rigidity at 20 °C

Adm. temperature at the natural rubber surface between -40 to +90 $^{\circ}\text{C}$

8 Maximum admissible speeds

Coupling Series	BR 151, 200, 210,	153, 160, 1 , 215, 220, 362	61, 190, 230, 240,	BR 17(172,), 171, 173	BR 1	150, 152, 1 55, 157, 15	54, 8	BR 364, 366		BR 159	
Size						Mat	erial					
	GG 25	GGG 40	C 45	GG 25	GGG 40	GG 25	GGG 40	C 45	GG 25	GGG 40	C 45	
K 005	4700	6700	9800	4700	5600	3000	3000	3000	4300	6100	9800	5600
K 010	4250	6050	8700	4250	4950	3000	3000	3000	3900	5550	8700	4950
K 015	4000	5700	8100	4000	4600	3000	3000	3000	3600	5200	8100	4600
K 020	3500	4950	7300	3500	4150	3000	3000	3000	3200	4500	7300	4150
K 025	3300	4650	6800	3300	3900	3000	3000	3000	3000	4300	6800	3900
K 030	2900	4200	6000	2900	3400	2900	3000	3000	2700	3900	6000	3400
K 035	2750	3900	5600	2750	3200	2750	3000	3000	2500	3600	5600	3200
K 040	2500	3500	5100	2500	2900	2500	3000	3000	2300	3300	5100	2900
K 045	2300	3300	4700	2300	2700	2300	3000	3000	2100	3000	4700	2700
K 050	2100	2900	4200	2100	2400	2100	2900	3000	1900	2700	4200	2400
K 055	1800	2600	3700	1800	2100	1800	2600	3000	1700	2400	3700	2100
K 060	1600	2300	3300	1600	1900	1600	2300	3000	1500	2200	3300	1900
K 065	1500	2100	2900	1500	1700	1500	2100	2900	1350	1900	2900	1700
K 070	1300	1900	2600	1300	1500	1300	1900	2600	1200	1700	2600	1500
K 075	1200	1700	2350	1200	1300	1200	1700	2350	1100	1600	2350	1300
K 080	1100	1500	2100	1100	1200	1100	1500	2100	1000	1400	2100	1200
K 085	1000	1400	1900	1000	1100	1000	1400	1900	900	1300	1900	1100
K 090	900	1200	1700	900	950	900	1200	1700	800	1100	1700	950

All speeds stated in min⁻¹.

Higher speeds can be achieved upon request, please contact Voith Turbo for further information.

9 Admissible shaft misalignments

Size	maximum admissible radial misalignment during load peaks	continuous admissible radial misalignment r at 600 min ⁻¹	continuous admissible axial misalignment	continuous admi angular misaligr at 600 min ⁻	ssible nment 1
	[mm]	[mm]	[mm]	[°]	
				BR 200, 210, 215, 220, 230, 240	BR 190
K 005	1.5	1.0	0.9	1	0.5
K 010	1.5	1.2	1.0	1	0.5
K 015	1.7	1.3	1.2	1	0.5
K 020	3.0	1.4	1.4	1	0.5
K 025	3.5	1.5	1.5	1	0.5
K 030	4.0	1.6	1.7	1	0.5
K 035	4.0	1.7	1.8	1	0.5
K 040	4.0	1.8	2.0	1	0.5
K 045	4.0	2.0	2.1	1	0.5
K 050	5.0	2.2	2.3	1	0.5
K 055	5.0	2.4	2.8	1	0.5
K 060	5.0	2.7	3.1	1	0.5
K 065	5.0	3.0	3.5	1	0.5
K 070	5.0	3.5	3.9	1	0.5
K 075	6.0	3.6	4.3	1	0.5
K 080	6.0	4.0	4.8	1	
K 085	6.0	4.4	5.3	1	
K 090	7.0	4.8	6.0	1	

The recommended alignment tolerances are 10% of the stated admissible shaft misalignment.

Radial displacement of couplings:

The admissible radial displacements for couplings can be stated only with reference to one determined speed since any radial displacement causes additional thermal stress. The continuous displacement is stated for 600 min⁻¹; at higher speeds n_x ,

$$r_{adm} = r \cdot \sqrt{\frac{600}{n_x}}$$
, n_x : max. speed

10 Questionnaire

Please complete the following questionnaire as detailed as possible, in order for a detailed design of a Voith Turbo Highly Flexible Coupling to be achieved:

Basic information					
Customer enquiry no.:					
Name:	Date:				
Company:	Department:				
Street/P.O.B.:					
Postcode (zip):	Town:				
Country:					
Telephone:	Fax:				
E-mail:	WWW:				

Configuration									
Remote mounted arrangement (Voith-Kuesel universal joint couplings)									
Joint shaft manufacturer:			Size:						
Deflection angle vertical:		Degrees	Deflection angle horizon	tal:		Degrees			
Mass moment of inertia:		kgm ²	Dynamic torsional rigidity of the shaft:			Nm/rad			
Flange diameter: mm			Bolt circle diameter:	Bolt circle diameter: mr					
Centering diameter: mm									
Centering, height:		mm	Centering, depth:			mm			
Number of bores:			Bore diameter:			mm			
Max. ambient temperature: °C									
Joint shaft flange:	DIN flange	🗅 Löbro/CV	Mechanics	🗆 Sp	picer/SAE	Others			
Senarate mounted arrange	ement (Ilniversally flexih	le countings)	_			_			
Arrangement between		ie ooupringe,	and	_					
Arrangement between.			dilu						
Expected misalignment:	axial	mm	radial	mm	angular	Degrees			
Short-time load peaks:	axial	mm	radial	mm	angular	Degrees			
				_	_				
Bell-house mounted arran	gement (Blind assembly	couplings)							
Coupling installed inside be	ell-housing:	🖵 yes	🗅 no						
Max. ambient temperature:		°C							

In case of installation inside bell-housing, please attach drawing illustrating the available space; else, state the connection dimensions (see "gears").

Prime mover (driving machine)								
Manufacturer:			Model:					
Int.	combustion engine			Motor				
🖵 Diesel	Gasoline Gasoline		Asynchronous	Synchronous				
Int. combustion engines								
2-Stroke	4-Stroke		No. of cylinders:					
□ In-line engine:	□ *V-engine		*Included angle between cyl	. banks: Degrees				
Rated power:	I	kW	Rated engine speed:	min ⁻¹				
max. Power:	I	kW	max. engine speed:	min ⁻¹				
max. torque**:	1	Nm	**at speed:	min ⁻¹				
Idle speed:	mi	in ⁻¹	Ignition speed:	min ⁻¹				
Displacement:	Liti	res	Stroke length:	mm				
Ignition intervals:	Degre	ees	Mass moment of inertia incl	. flywheel ¹⁾ : kgm ²				
Dimensions of flywheel con	nection							
Flywheel SAE size:								
Centering diameter:	n	nm	Bolt circle diameter:	mm				
Number of bores:			Bore diameter:	mm				
In case of narrow installation	space and particular connection dime	ensions,	please attach a drawing or sk	etch.				
Dimensions of flywheel hou	sina connection		_					
Flywheel housing SAE size:		_						
Centering diameter:	n	nm	Bolt circle diameter:	mm				
Number of bores:			Bore diameter:	mm				
B/Laboura								
Motors	A							
Datad namari	Asynchronous		Deted neuron	Synchronous				
Rated power.		KVV	Rateu power.	KVV				
Stalling torque:	111	III '	Starting torque:	'				
Stanning torque.	1		Starting torque.	NIII				
Dimensions of the connection	on							
Shaft diameter:	n	nm	Shaft length:	mm				
Feather key dimensions:		>	c mm	according to DIN 6885 sheet 1				
Other dimensions:								
¹⁾ Necessary for the resonand	ce assessment							

Driven machine (power consumer)									
Manufacturer:			Model:						
Category									
Mechanical gearbox	Automatic transmission**	: *	\Box with/ \Box without con	verter lockup	* * *				
Generator	Reciprocating pump		Rotary pump		D Blower				
Dever brake	Other								
Power data									
max. Power:		kW	max. engine speed:			min ⁻¹			
max. torque****:		Nm	****at speed:			min ⁻¹			
Mass moment of inertia:		kgm ²							
For marine propulsion									
Number of propeller blades:	Constant-pitch propeller		Variable-pitch prope	ller	🗅 Waterjet				
Torsional rigidity of the shaft	ting:	Nm/rad							
Please enclose drawing of the propeller shaft (length and diameter dimensions)									
Mass moment of inertia:	ahead:	kgm ²	astern:	kgm ²	neutral:	kgm ²			
Please enclose a scheme of t	the elastic system of masses.								
For nearboxes	_		_		_				
Description:		_		_					
Transmission ratio									
Mass moment of inertia:		kam ²							
Please enclose a scheme of	the elastic system of masses.								
	,								
For pumps/compressors	_	_	_	_	_				
Alternating torque induced to	o the crankshaft:								
Alternating torque + :		Nm	Alternating torque – :			Nm			
Frequency:		Hz							
Dimensions of the connection	on								
Flange diameter:		mm	Bolt circle diameter:			mm			
Centering diameter:		mm							
Height:		mm	Depth:			mm			
Number of bores:			Bore diameter:			mm			
Shaft diameter:		mm	Shaft length:			mm			
Feather key dimensions:			x mm	ı	according to DIN 688	5 sheet 1			
Other dimensions:									

11 Technical services

The design of drive chains subject to torsional vibration requires many years of experience, especially for diesel engine applications. Voith Turbo provides its customers with this experience in the form of extensive design and operating services. These are in particular:

Torsional Vibration Analysis/ Calculations (TVA/TVC):

We offer the dynamic consideration of complete drive chains in the time and frequency area (e.g. during startup and shutdown, rated operation, idling, acceleration/deceleration, short circuit etc.).

 Torsional Vibration Measurements (TVM): We offer measurements of complete drive chains, i.e. the measurement of torsional torques, angles of twist and temperatures directly on site. Determination of load spectrums:

Based on the results of torsional vibration measurements, we offer to determine application-specific load spectrums. Using these load spectrums, it is possible to dimension the coupling lifetime precisely and specifically.

Repair:

We offer fast, expert and costefficient repair of coupling systems, restoring to an as-new condition. Service by field fitters:

We offer to send you specialised mechanics for any commissioning work or other service work.

BV, Bureau Veritas, France

GL, Germanischer Lloyd, Germany

LRoS, Lloyds Register of Shipping, United Kingdom

12 Certification

At Voith, our top priority is to ensure the affordability, reliability, environmental compatibility and safety of our products and services. In order to maintain these principles in the future just as we do today, Voith Turbo has a firmly established integrated management system for quality, the environment, and occupational health and safety. For our customers, this means that they are purchasing high-guality capital goods that are manufactured and can be used in safe surroundings and with minimal environmental impact.

Certificates for the management systems to ISO 9001: 2000 (quality), ISO 14001: 2000 (environment) and OHSAS 18001: 1999 (occupational health and safety)

of Shipping, Republic Korea

13 Classification

We offer to have our coupling designs approved, among others, by the following classification societies. Other classification societies upon request.

ABS, American Bureau of Shipping, USA

DNV, Det Norske Veritas, Norway

RINA, Registro Italiano Navale, Italy

Voith Turbo Hochelastische Kupplungen GmbH & Co. KG Centrumstr. 2 45307 Essen, Germany Tel. +49 201 55783-61 Fax +49 201 55783-65 kupplungssysteme@voith.com www.voithturbo.com/highly-flexible-couplings

Voith Highly Flexible Couplings – used around the world

Application examples

- Railvehicles: Railcars, locomotives and special purpose vehicles
- Ships and boats: Workboats, pleasure boats and ferries
- Construction vehicles: Wheel loaders, dump trucks, mobile cranes etc.
- Test rigs: Research and development test rigs, End-of-line test rigs etc.
- Generators
- Pumps
- Compressors

